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Motivation

Recent advances in OT for graphs has shown to be useful in different
graph-based learning tasks:

• Graph Classification [Vayer et al., 2019]
• Graph Clustering [Peyré et al., 2016, Vayer et al., 2019]
• Graph Dictionary Learning [Vincent-Cuaz et al., 2021]
• Supervised Graph Prediction [Brogat-Motte et al., 2022]

Motivation: Unlock OT-based learning for edge featured graphs. We
target especially Supervised Graph Prediction problem. 2
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Figure 2: Existing OT-based distance on graph objects: Gromov-Wasserstein
[Mémoli, 2011, Sturm, 2012], Fused Gromov-Wasserstein [Vayer et al., 2019],
Network Gromov-Wasserstein [Chowdhury and Mémoli, 2019].
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Node and Edge Featured Graph

Definition (Node and Edge Featured Graph)
A node and edge featured graph of size m is a quadruple of the
form (F,A, E,p) where

• F ∈ Ψm is a tuple of points valued in a metric space (Ψ,dΨ)
• A ∈ Rm×m is a real-valued matrix
• E ∈ Ωm×m is a tuple of points valued in a metric space (Ω,dΩ)
• p ∈ Σm is a simplex histogram

We denote G as a set of such quadruples.
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Node and Edge Featured Graph

Example (Node and Edge Featured Graph)
• Ψ = {red, yellow}: the node-color space
• Ω = {solid,dashed,non-edge}: the edge-type space

F =

[1, 0][1, 0]
[0, 1]

 ,A =

0 1 1
1 0 0
1 0 0



E =

[0, 0, 1] [0, 1, 0] [1, 0, 0]
[0, 1, 0] [0, 0, 1] [0, 0, 1]
[1, 0, 0] [0, 0, 1] [0, 0, 1]

,p =

1/31/3
1/3
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Fused Network Gromov-Wasserstein Distance

Definition (FNGW Distance, Discrete Case 1)
Given g = (F,A, E,p) of size m, g̃ = (F̃, Ã, Ẽ, p̃) of size m̃
corresponding to two tuples of G, and trade-off parameters
(α, β) ∈ [0, 1]2, the Fused Network Gromov-Wasserstein distance
between them for (p,q) ∈ [1,∞] is written as :

FNGWα,β,q,p(g, g̃) = min
π∈Π(p,p̃)

Eα,β,q,p((F,A, E), (F̃, Ã, Ẽ), π) (1)

with

Eα,β,q,p((F,A, E), (F̃, Ã, Ẽ), π) =
( ∑
i,j,k,l

[
αdΩ

(
E(i, k), Ẽ(j, l)

)q
+β|A(i, k)− Ã(j, l)|q + (1− α− β)dΨ

(
F(i), F̃(j)

)q ]p
πk,lπi,j

) 1
p

(2)

1A general definition of FNGW distance is also given in the paper.
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Fused Network Gromov-Wasserstein Distance

Example (FNGW Distance)
The FNGW distance between the two graphs illustrated above is
0.296 when α = 1

3 , β = 1
3 , p = 1 and q = 2, where the FGW distance

between them is 0.

Computation algorithm: When p = 1 and q = 2, we adopt
Conditional Gradient Descent (CGD) as in [Vayer et al., 2020] to
compute FNGW distance.
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Metric Properties

The FNGW distance satisfies the following metric properties:
positivity, symmetry, equality with a corresponding notion of weak
isomorphism, relaxed triangle inequality with a factor of 2q−1.
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Fused Network
Gromov-Wasserstein Barycenter



Fused Network Gromov-Wasserstein Barycenter

Definition (FNGW Barycenter)
Given a set {gi}ni=1 with
gi = (Fi,Ai, Ei,pi) ∈ Rmi×S × Rmi×mi × Rmi×mi×T × Σmi and a set of
weights {λi}ni=1 such that

∑
i λi = 1, the FNGW Barycenter for a

pre-defined histogram p ∈ Σm is defined as follows:

B({λi}i, {gi}i,p) = argmin
F∈Rm×S,A∈Rm×m,E∈Rm×m×T

∑
i

λiFNGWα,β((F,A, E,p),gi)

Computation algorithm: Block Coordinate Descent.
Proposition
Optimizing above Equation with respect to tensor E has a
closed-form solution:

E = 1
Im×T ×2 ppT

∑
i

λi(Ei ×2 πi)×1 πi (3)
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Property of FNGW Barycenter

Proposition
If the set of tensors {Ei}i satisfies the condition:

∀j, l, i,
T∑
t
Ei(j, l, t) = a ∈ R (4)

then the barycenter E given by our alogithm also verify the same
property.

One interesting consequence: When the edge labels of the graphs
are represented using one-hot encoding, the resulting barycenter
can be discretized into a true graph by applying a simple argmax
operation on the edge features, due to their simplex nature.

⇒ Useful for labeled graph prediction
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Examples of FNGW Barycenter
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Figure 3: FNGW barycenter (rightmost) of the graphs obtained by perturbing
a random molecule (leftmost).
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Structured Prediction with FNGW
Barycenter



Structured Prediction: Supervised Graph Prediction

f︎

y︎

Metabolite	

x︎

MS/MS	spectra	

Figure 4: Metabolite Identification Task

Existing works:

• Kernel induced loss [Brouard et al., 2016]
• OT-based loss [Brogat-Motte et al., 2022]

⇒ Surrogate Regression Framework - ILE
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(Relaxed) Supervised Graph Prediction

Structured graph space:

G =
{
(F,A, E,p) |mg ≤ mmax, A ∈ {0, 1}mg×mg , F = (Fi)

mg
i=1 ∈ Fmg ,

E = (Eij) ∈ T mg×mg , p = mg
−11mg

}
(5)

where F ⊂ RS and T ⊂ RT are finite node and edge features spaces.

Relaxed graph space:

Gm =
{
(F,A, E,p) | A ∈ [0, 1]m×m, F = (Fi)mi=1 ∈ Conv(F)m,

E = (Eij) ∈ Conv(T )m×m, p = m−11m
}

(6)
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(Relaxed) Supervised Graph Prediction

Given a set of training pairs consisting of inputs and graphs to be
predicted {(xi,gi)}ni=1 drawn from a fixed but unknown distribution ρ
on X × G .

We are interested in the relaxed supervised graph prediction
problem, i.e., finding an estimator f : X → Gm of the minimizer f∗ of
the expected risk R(f) = Eρ[FNGWα,β(f(X),G)]
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Proposed Estimator

Based on the work of [Ciliberto et al., 2020, Brogat-Motte et al., 2022],
we propose an estimator of the following form

f̂(x) = argmin
g∈Gm

n∑
i=1

ξ(x)iFNGWα,β(g,gi) (7)

with ξ(x) = KST(SK2ST + nλSKST)†Sκx where K ∈ Rn×n is the input
kernel Gram matrix, κx = (k(x, x1), . . . , k(x, xn))T ∈ Rn, and S ∈ Rs×n

with s≪ n is a sketching matrix.

• (Proposition) The FNGW loss admits an Implicit Loss Embedding
(ILE)→ f̂ is universally consistent and its learning rate is of
order n−1/4 with additional assumptions.

• Sketched ILE enables the supervised graph prediction with more
than 100,000 training data points.

The estimator describes actually a barycenter problem.

15



Experiment: Fingerprint to Molecule

Fin2Mol Dataset:

• Predict a QM9 molecule from its fingerprint.
• Each molecule contains up to 9 atoms.
• The dataset contains around 130,000 fingerprint-molecule pairs.

Table 1: Graph edit distances of different methods on the Fin2Mol test set.

GED w/o edge feature ↓ GED w/ edge feature ↓

NNBary-FGW 5.000± 0.140 -
NNBary-FNGW 5.311± 0.090 5.756± 0.073

Sketched ILE-FGW 3.037± 0.111 -
Sketched ILE-FNGW 1.449± 0.034 1.534± 0.029 16



Experiment: Fingerprint to Molecule
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Figure 5: Qualitative comparison of the predicted QM9 molecules.

17



Experiment: Metabolite Identification

Table 2: Top-k accuracies on the metabolite identification test set. Best
results are in Bold.

Top-1 ↑ Top-10 ↑ Top-20 ↑

WL kernel 9.8% 29.1% 37.4%
IOKR - Fingerprint w/ linear kernel 28.6% 54.5% 59.9%
IOKR - Fingerprint w/ gaussian kernel 41.0% 62.0% 67.8%

ILE-FGW diffuse 28.1% 53.6% 59.9%

ILE-FNGW diffuse + Bond stereo 27.7% 55.2% 60.9%
ILE-FNGW diffuse + Bond type 34.6% 55.1% 60.0%
ILE-FNGW diffuse + Mix 36.2% 58.2% 61.9%
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Conclusion and Future Work

• FNGW inherits similar geometric properties as FGW and NGW.
• FNGW benefits supervised graph prediction.
• Acceleration of both the distance computation and the
barycenter computation.

• Integration of our codes into POT2 package.
• Potential usage of FNGW in other graph learning algorithms
where the pairwise graph comparison is involved.

2POT: Python Optimal Transport, https://pythonot.github.io/
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Thanks for your attention!

Questions?
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FNGW Distance, General Form

(Definition): FNGW Distance, General Form
Let G be the set of tuples of the form (X, ψX, φX, ωX, µX) where X is a
polish space, ψX : X→ Ψ is a bounded continuous measurable
function from X to a metric space (Ψ,dΨ) , φX : X× X→ R is a
bounded continuous measurable function, ωX : X× X→ Ω is a
bounded continuous measurable function from X2 to a metric
space (Ω,dΩ) and µX is a fully supported Borel probability measure.

26



FNGW Distance, General Form

(Definition): FNGW Distance, General Form
Given two tuples gX = (X, ψX, φX, ωX, µX), gY = (Y, ψY, φY, ωY, µY) from
G and trade-off parameters (α, β) ∈ [0, 1]2, the Fused Network
Gromov-Wasserstein Distance between gX and gY is defined for any
(p,q) ∈ [1,∞] as follows:

FNGWα,β,q,p(gX,gY) = min
µ∈Π(µX,µY)

Eα,β,q,p(gX,gY, µ) (8)

with

Eα,β,q,p(gX,gY, µ) =
(∫

X×Y

∫
X×Y

[(1− α− β)dΨ (ψX(x), ψY(y))q

+αdΩ(ωX(x, x′), ωY(y, y′))q + β|φX(x, x′)− φY(y, y′)|q]pdµ(x, y)dµ(x′, y′)
) 1

p

(9)
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Metric Properties

We verify the metric properties satisfied by FNGW distance in the
general case.

Theorem (Metric Properties)
The FNGW distance satisfies the following properties: for all
gX = (X, ψX, φX, ωX, µX), gY = (Y, ψY, φY, ωY, µY) and
gZ = (Z, ψZ, φZ, ωZ, µZ) from G:

• (Positivity) FNGWα,β,q,p(gX,gY) ≥ 0
• (Symmetry) FNGWα,β,q,p(gX,gY) = FNGWα,β,q,p(gY,gX)
• (Equality) FNGWα,β,q,p(gX,gX) = 0. FNGWα,β,q,p(gX,gY) = 0 if
and only if gX is weakly isomorphic to gY.

• (Relaxed Triangle Inequality) FNGWα,β,q,p(gX,gZ) ≤
2q−1(FNGWα,β,q,p(gX,gY) + FNGWα,β,q,p(gY,gZ))
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Weak Isomorphism

(Definition) Weak Isomorphism of Node and Edge Featured Graphs
Two graphs gX and gY are isomorphic if and only there is a Borel
probability space (Z, µZ) with measurable maps f : Z→ X and
g : Z→ Y such that

f#µZ = µX g#µZ = µY (10)
∥(1− α− β)dΨ (ψX ◦ f, ψY ◦ g)q + αdΩ(f#ωX,g#ωY)q

+β|f#φX − g#φY|q∥∞ = 0 (11)
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FNGW Computation Algorithm
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FNGW Barycenter Algorithm
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ILE Condition

(Definition): Implicit Loss Embedding
A loss function ∆ : Y × Y is said to admit an Implicit Loss
Embedding (ILE) if there exist a separable Hilbert space Z with
inner product ⟨·, ·⟩Z , a continuous embedding ψ : Y → Z and a
bounded linear operator V : Z → Z such that for all y, y′ ∈ Y

∆(y, y′) = ⟨ψ(y), Vψ(y′)⟩Z (12)
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