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Motivation Supervised Graph Prediction with FNGW
Problem: Graph-based Learning with Optimal Transport Given input space X, output graph space G, relaxed graph space G,, = {(F,A,E,p) | C' €
_ _ —1 ol
Existing Works: Graph Classification with FGW [5], Graph Clustering with GW [4], FGW [5] or NGW 0, 1], 5 (F)IL; € Conv(F)™, E = (Ej;) € Conv(T)™™, p = m~1p} where F C R
2], Graph Dictionary Learning with (F)GW [6], Supervised Graph Prediction with FGW [1] and T C R* are finite node and edge feature spaces, and training samples {(z;;, gz) |, Supervised
. , Graph Prediction requires finding an estimator of the minimizer f* of the expected risk
Goal: We want tot y VVe target especially R(f) = Ep[FNGW,, 5(f(X),G)]. Based on the work of [3, 1], we propose an estimator of the form
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f(z) = argmin ) ~£(x); (9, 9i)
9g€Gm i=1

/eat-01 under with is the input kernel Gram matrix,
/N . ? Book O ke = (k(z,21),. .., k(x,azn))T c R", and S € R5*™ with s <« n is a sketching matrix.
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ARGO/ ‘. ARGI | . ! TP E E) — f is universally consistent and its
’ \ H,N— 1 playmg behmd learning rate is of order n with additional assumptions.
K | bo HN E readmg Building : enables the supervised graph prediction with more than 100,000 training points.
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Node and Edge Featured Graph
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A node and edge featured graph of size m is a quadruple of the form (F, A, E, p) where f = 0 CH
0 0 3

We denote G as a set of such quadruples.
GED w/o edge feature | GED w/ edge feature |

. NNBary-FGW 5.000 £ 0.140 -
W= tred, yellow}: the node-color space NNBary-FNGW 5.311 4 0.090 5.756 + 0.073
. = () = {solid, dashed, non-edge}: the edge-type space
I Sketched ILE-FGW 3.037 £0.111 -
l 110 01 1] Sketched [LE-FNGW 1.449 == 0.034 1.534 == 0.029
I = ;1’ O ,A=1100 Table. Graph edit distances of different methods on the Fin2Mol test set.
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Fused Network Gromov-Wasserstein Distance | | ! | | |
Given g = (F, A, E,p) of sizem, § = (F, A, E, p) of size m corresponding to two tuples of G, and C /” C /” C /”
trade-off parameters («, 8) € [0,1]%, the Fused Network Gromov-Wasserstein distance between TP c N O c
them for (p, q) € |1, 00| is written as : . \ \ _ \
FNGWq 54p(0,9) = min &, 54,((F, A E), (F, A E),T) Yo" o " ~a” e
Y Y WEH(p)ﬁ) Y 1) _
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+6‘A<Z’ k) A(]’ l)| T (1 . 5)61\1; <F(7’>’ F(J>) ] WWW@J) Figure. Qualitative comparison of the predicted QM9 molecules.
The FNGW distance satisfies the following metric properties: , , with a
corresponding notion of weak isomorphism, with a factor of 2471, . : . .
P . P Experiment: Metabolite Identification
To solve Metabolite [dentification problem, the learning algorithm is expected to predict the metabolite
(small molecules) given a tandem mass spectra. For each input spectra, a known set of metabolite
i FGW = O So candidates is provided.
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: """'a-..,,H Top-1 Top-10 Top-20
| ® WL kernel 9.8% 29.1% 37.4%
| Fingerprint with linear kernel 28.6% 54.5%  59.9%
| FNGW = 0.296 Fingerprint with gaussian kernel 41.0% 62.0% 67.8%
FGW diffuse 28.1% 53.6%  59.9%
FNGW diffuse + Bond stereo  27.7% 55.2%  60.9%
FNGW Barycenter FNGW diffuse + Bond type 34.6% 55.1%  60.0%
FNGW diffuse + Mix 36.2% 58.2% 61.9%

Given a set {gk}szl and a set of weights {)‘k}szl such that > . A = 1, the FNGW Barycenter for
a pre-defined histogram p € %, is defined as follows:

Bary({\e} e, {1} P) = aLg min > MFNGW, 5((F, A, B, p), g)
FER”XS,AERRXH,EERTLX”XT 2 References
We employ the Block Coordinate Descent (BCD) algorithm to obtain the FNGW barycenter where

_ 1
the tensor F can be updated by E = GA— Yo AR(Ey Xomg) X1 T

Table. Top-k accuracies on the metabolite identification test set.
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