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Motivation

Problem: Graph-based Learning with Optimal Transport

Existing Works: Graph Classification with FGW [5], Graph Clustering with GW [4], FGW [5] or NGW

[2], Graph Dictionary Learning with (F)GW [6], Supervised Graph Prediction with FGW [1]

Goal: Wewant to unlock OT-based learning for edge featured graphs. We target especially Supervised

Graph Prediction task.

Node and Edge Featured Graph

A node and edge featured graph of size m is a quadruple of the form (F, A, E, p) where

F ∈ Ψm is a tuple of points valued in a metric space (Ψ, dΨ)
A ∈ Rm×m is a real-valued matrix

E ∈ Ωm×m is a tuple of points valued in a metric space (Ω, dΩ)
p ∈ Σm is a simplex histogram

We denote G as a set of such quadruples.

Ψ = {red, yellow}: the node-color space
Ω = {solid, dashed, non-edge}: the edge-type space

F =

[1, 0]
[1, 0]
[0, 1]

 , A =

0 1 1
1 0 0
1 0 0



E =

[0, 0, 1] [0, 1, 0] [1, 0, 0]
[0, 1, 0] [0, 0, 1] [0, 0, 1]
[1, 0, 0] [0, 0, 1] [0, 0, 1]

, p =

1/3
1/3
1/3


Fused Network Gromov-Wasserstein Distance

Given g = (F, A, E, p) of size m, g̃ = (F̃ , Ã, Ẽ, p̃) of size m̃ corresponding to two tuples of G, and
trade-off parameters (α, β) ∈ [0, 1]2, the Fused Network Gromov-Wasserstein distance between
them for (p, q) ∈ [1, ∞] is written as :

FNGWα,β,q,p(g, g̃) = min
π∈Π(p,p̃)

Eα,β,q,p((F, A, E), (F̃ , Ã, Ẽ), π)

with

Eα,β,q,p((F, A, E), (F̃ , Ã, Ẽ), π) =
( ∑

i,j,k,l

[
αdΩ

(
E(i, k), Ẽ(j, l)

)q

+β|A(i, k) − Ã(j, l)|q + (1 − α − β)dΨ
(
F (i), F̃ (j)

)q
]p

πk,lπi,j

)1
p

The FNGW distance satisfies the following metric properties: positivity, symmetry, equality with a

corresponding notion of weak isomorphism, relaxed triangle inequality with a factor of 2q−1.

FNGWBarycenter

Given a set {gk}K
k=1 and a set of weights {λk}K

k=1 such that
∑

k λk = 1, the FNGW Barycenter for

a pre-defined histogram p ∈ Σn is defined as follows:

Bary({λk}k, {gk}k, p) = arg min
F∈Rn×S,A∈Rn×n,E∈Rn×n×T

∑
k

λkFNGWα,β((F, A, E, p), gk)

We employ the Block Coordinate Descent (BCD) algorithm to obtain the FNGW barycenter where

the tensor E can be updated by E = 1
In×T ×2ppT

∑
k λk(Ek ×2 πk) ×1 πk.

(a) Random circle samples (b) Circle barycenter

Supervised Graph Prediction with FNGW

Given input space X , output graph space G, relaxed graph space Gm =
{

(F, A, E, p) | C ∈
[0, 1]m×m, F = (Fi)mi=1 ∈ Conv(F)m, E = (Eij) ∈ Conv(T )m×m, p = m−11m

}
where F ⊂ RS

and T ⊂ RT are finite node and edge feature spaces, and training samples {(xi, gi)}n
i=1, Supervised

Graph Prediction requires finding an estimator f : X → Gm of the minimizer f∗ of the expected risk
R(f ) = Eρ[FNGWα,β(f (X), G)]. Based on the work of [3, 1], we propose an estimator of the form

f̂ (x) = arg min
g∈Gm

n∑
i=1

ξ(x)iFNGWα,β(g, gi)

with ξ(x) = KST(SK2ST + nλSKST)†Sκx where K ∈ Rn×n is the input kernel Gram matrix,

κx = (k(x, x1), . . . , k(x, xn))T ∈ Rn, and S ∈ Rs×n with s � n is a sketching matrix.

The FNGW loss admits an Implicit Loss Embedding (ILE) → f̂ is universally consistent and its
learning rate is of order n−1/4 with additional assumptions.
Sketched ILE enables the supervised graph prediction with more than 100,000 training points.

Experiment: Fingerprint to Molecule

GED w/o edge feature ↓ GED w/ edge feature ↓

NNBary-FGW 5.000 ± 0.140 -

NNBary-FNGW 5.311 ± 0.090 5.756 ± 0.073

Sketched ILE-FGW 3.037 ± 0.111 -

Sketched ILE-FNGW 1.449 ± 0.034 1.534 ± 0.029

Table. Graph edit distances of different methods on the Fin2Mol test set.
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Figure. Qualitative comparison of the predicted QM9 molecules.

Experiment: Metabolite Identification

To solveMetabolite Identification problem, the learning algorithm is expected to predict the metabolite

(small molecules) given a tandem mass spectra. For each input spectra, a known set of metabolite

candidates is provided.

Top-1 Top-10 Top-20

WL kernel 9.8% 29.1% 37.4%
Fingerprint with linear kernel 28.6% 54.5% 59.9%
Fingerprint with gaussian kernel 41.0% 62.0% 67.8%

FGW diffuse 28.1% 53.6% 59.9%

FNGW diffuse + Bond stereo 27.7% 55.2% 60.9%
FNGW diffuse + Bond type 34.6% 55.1% 60.0%
FNGW diffuse + Mix 36.2% 58.2% 61.9%

Table. Top-k accuracies on the metabolite identification test set.
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