

Exploiting Edge Features in Graph-based Learning with Fused Network **Gromov-Wasserstein Distance**

Matthieu Labeau ¹ Florence d'Alché-Buc¹ Junjie Yang¹

¹LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Motivation

Problem: Graph-based Learning with Optimal Transport

Existing Works: Graph Classification with FGW [5], Graph Clustering with GW [4], FGW [5] or NGW [2], Graph Dictionary Learning with (F)GW [6], Supervised Graph Prediction with FGW [1]

Goal: We want to unlock OT-based learning for edge featured graphs. We target especially Supervised Graph Prediction task.

Supervised Graph Prediction with FNGW

Given input space \mathcal{X} , output graph space \mathcal{G} , relaxed graph space $\mathcal{G}_m = \{(F, A, E, \mathbf{p}) \mid C \in \mathcal{G}\}$ $[0,1]^{m \times m}, F = (F_i)_{i=1}^m \in \operatorname{Conv}(\mathcal{F})^m, E = (E_{ij}) \in \operatorname{Conv}(\mathcal{T})^{m \times m}, p = m^{-1}\mathbb{1}_m\}$ where $\mathcal{F} \subset \mathbb{R}^S$ and $\mathcal{T} \subset \mathbb{R}^T$ are finite node and edge feature spaces, and training samples $\{(x_i, g_i)\}_{i=1}^n$, Supervised Graph Prediction requires finding an estimator $f: \mathcal{X} \to \mathcal{G}_m$ of the minimizer f^* of the expected risk $\mathcal{R}(f) = \mathbb{E}_{\rho}[\text{FNGW}_{\alpha,\beta}(f(X),G)]$. Based on the work of [3, 1], we propose an estimator of the form

$$\hat{f}(x) = \underset{g \in \mathcal{G}_m}{\operatorname{arg\,min}} \sum_{i=1}^{n} \xi(x)_i \operatorname{FNGW}_{\alpha,\beta}(g,g_i)$$

with $\xi(x) = \mathbf{K}S^{\mathsf{T}}(S\mathbf{K}^2S^{\mathsf{T}} + n\lambda S\mathbf{K}S^{\mathsf{T}})^{\dagger}S\boldsymbol{\kappa}_x$ where $\mathbf{K} \in \mathbb{R}^{n \times n}$ is the input kernel Gram matrix, $\boldsymbol{\kappa}_x = (k(x, x_1), \dots, k(x, x_n))^{\mathsf{T}} \in \mathbb{R}^n$, and $S \in \mathbb{R}^{s \times n}$ with $s \ll n$ is a sketching matrix.

• The FNGW loss admits an Implicit Loss Embedding (ILE) $\rightarrow \hat{f}$ is universally consistent and its learning rate is of order $n^{-1/4}$ with additional assumptions.

Experiment: Fingerprint to Molecule

Node and Edge Featured Graph

A node and edge featured graph of size m is a quadruple of the form (F, A, E, p) where

- $F \in \Psi^m$ is a tuple of points valued in a metric space (Ψ, d_{Ψ})
- $A \in \mathbb{R}^{m \times m}$ is a real-valued matrix
- $E \in \Omega^{m \times m}$ is a tuple of points valued in a metric space (Ω, d_{Ω}) • $p \in \Sigma_m$ is a simplex histogram

We denote \mathcal{G} as a set of such quadruples.

Fused Network Gromov-Wasserstein Distance

Given $g = (F, A, E, \mathbf{p})$ of size $m, \tilde{g} = (\tilde{F}, \tilde{A}, \tilde{E}, \tilde{\mathbf{p}})$ of size \tilde{m} corresponding to two tuples of \mathcal{G} , and trade-off parameters $(\alpha, \beta) \in [0, 1]^2$, the Fused Network Gromov-Wasserstein distance between them for $(p,q) \in [1,\infty]$ is written as :

GED w/o edge feature \downarrow	GED w/ edge feature 、
-----------------------------------	-----------------------

NNBary-FGW NNBary-FNGW	5.000 ± 0.140 5.311 ± 0.090	-5.756 ± 0.073
Sketched ILE-FGW Sketched ILE-FNGW	3.037 ± 0.111 1.449 \pm 0.034	-1.534 ± 0.029

Table. Graph edit distances of different methods on the Fin2Mol test set.

$$\operatorname{YNGW}_{\alpha,\beta,q,p}(g,\tilde{g}) = \min_{\pi \in \Pi(\boldsymbol{p},\tilde{\boldsymbol{p}})} \mathcal{E}_{\alpha,\beta,q,p}((F,A,E),(\tilde{F},\tilde{A},\tilde{E}),\pi)$$

with

$$\mathcal{E}_{\alpha,\beta,q,p}((F,A,E),(\tilde{F},\tilde{A},\tilde{E}),\pi) = \left(\sum_{i,j,k,l} \left[\alpha d_{\Omega} \left(E(i,k),\tilde{E}(j,l)\right)^{q} + \beta |A(i,k) - \tilde{A}(j,l)|^{q} + (1-\alpha-\beta) d_{\Psi} \left(F(i),\tilde{F}(j)\right)^{q}\right]^{p} \pi_{k,l}\pi_{i,j}\right)^{\frac{1}{p}}$$

The FNGW distance satisfies the following **metric** properties: positivity, symmetry, equality with a corresponding notion of weak isomorphism, relaxed triangle inequality with a factor of 2^{q-1} .

FNGW Barycenter

Given a set $\{g_k\}_{k=1}^K$ and a set of weights $\{\lambda_k\}_{k=1}^K$ such that $\sum_k \lambda_k = 1$, the FNGW Barycenter for a pre-defined histogram $\boldsymbol{p} \in \Sigma_n$ is defined as follows:

Figure. Qualitative comparison of the predicted QM9 molecules.

Experiment: Metabolite Identification

To solve Metabolite Identification problem, the learning algorithm is expected to predict the metabolite (small molecules) given a tandem mass spectra. For each input spectra, a known set of metabolite candidates is provided.

	Top-1	Top-10	Top-20
WL kernel	9.8%	29.1%	37.4%
Fingerprint with linear kernel	28.6%	54.5%	59.9%
Fingerprint with gaussian kernel	41.0 %	62.0 %	67.8 %
FGW diffuse	28.1%	53.6%	59.9%
FNGW diffuse + Bond stereo	27.7%	55.2%	$\begin{array}{c} 60.9\% \\ 60.0\% \\ 61.9\% \end{array}$
FNGW diffuse + Bond type	34.6%	55.1%	
FNGW diffuse + Mix	36.2%	58.2%	

Table. Top-k accuracies on the metabolite identification test set.

$Bary(\{\lambda_k\}_k, \{g_k\}_k, \boldsymbol{p}) = \operatorname*{arg\,min}_{F \in \mathbb{R}^{n \times S}, A \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n \times T}} \sum_k \lambda_k FNGW_{\alpha, \beta}((F, A, E, \boldsymbol{p}), g_k)$

We employ the Block Coordinate Descent (BCD) algorithm to obtain the FNGW barycenter where the tensor E can be updated by $E = \frac{1}{\mathcal{I}_{n \times T} \times_2 p p^{\mathsf{T}}} \sum_k \lambda_k (E_k \times_2 \pi_k) \times_1 \pi_k.$

References

- [1] L. Brogat-Motte, R. Flamary, C. Brouard, J. Rousu, and F. D'Alché-Buc. Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters. In ICML, volume 162 of Proceedings of Machine Learning Research, pages 2321–2335, July 2022.
- [2] S. Chowdhury and F. Mémoli. The Gromov–Wasserstein Distance Between Networks and Stable Network Invariants. Information and Inference: A Journal of the IMA, 8(4):757–787, 2019.
- [3] C. Ciliberto, L. Rosasco, and A. Rudi. A General Framework for Consistent Structured Prediction with Implicit Loss Embeddings. JMLR, 21(98):1-67, 2020.
- [4] G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein Averaging of Kernel and Distance Matrices. In ICML, volume 48 of Proceedings of Machine Learning Research, pages 2664–2672, June 2016.
- [5] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty. Optimal Transport for structured data with application on graphs. In *ICML*, volume 97 of Proceedings of Machine Learning Research, pages 6275–6284, June 2019.
- [6] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, and N. Courty. Online Graph Dictionary Learning. In ICML, volume 139 of Proceedings of Machine Learning Research, pages 10564–10574, July 2021.

Acknowledgements

This research work is supported by the Hi! PARIS Center and the Institut Polytechnique de Paris.